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Atmospheric methane (CH4) plays a critical role in climate change due to its potent greenhouse effect, which is tens of times greater than that of CO2, with approximately 60% of emissions stemming from human 
activities. The thawing of Antarctic permafrost, containing an estimated 540 Gt of CH4, poses a particular threat as its release could significantly intensify global warming. While CO2’s atmospheric cycle and 

vertical profile are well-documented, CH4’s distribution and profiling remain challenging. Satellite observations in the infrared range, specifically the NIR, MIR, and TIR, are vital for global CH4 monitoring and 
analysis of its spatial and temporal variability.

In the PRIN-MVP project, an innovative methodology based on Physics-Informed Neural Networks (PINNs) [1] was developed and validated to obtain vertical CH₄ profiles from satellite data, allowing accurate 
identification of methane sources at the surface. We have successfully applied to IASI data, this technique leverages approximately 1,000,000 simulated clear-sky spectra generated by the σ -IASI/F2N radiative 
model [2], along with ancillary information. Averaging Kernel are used to optimize spectral intervals [3], while PCA reduces dimensionality and noise to achieve consistent projections at each atmospheric level. 

The results demonstrate the effectiveness of PINNs in reconstructing complete and coherent CH₄ profiles, validated against reference measurements.

Context and motivation

Physics Informed Neural Network (PINN)

Radiances were simulated using the σ-IASI/F2N radiative
transfer code, which uses a fixed pressure grid. Inputs profiles
and parameters are downloaded from the Copernicus
databases. The dataset includes clear sky measurements over
the 2010-2020 timeframe, considering the 4 synoptic times
(00-06-12-18 UTC), with a focus on Europe.

In order to reduce the dimensionality of the data, without reducing the information content of the
data itself, compression was done by means of an Averaging Kernel (AK) study and Principal
Component Analysis (PCA).

Results

“Inflated PINN” model:
The “Inflated PINN” model appears to be adequately
accurate for the prediction of sources with small to medium
emissions, while although it is able to identify them, it tends
to slightly underestimate very large emissions. An analysis
on the test set produced an average error relative to the
first pressure layer (i.e. the initial layer of each profile) of
200 ppbv, or ~10% of the value.

Two different PINN models were implemented, “PINN 0” to accurately find the vertical gas profile and “Inflated PINN” to find CH4 sources. The substantial difference between the two networks is in the covariance
matrix used in the cost function. For the PINN inflated, the first 10 values of the first 10 rows of the covariance matrix were inflated by a factor of 10, so as to give the network more freedom in finding the
minimum error at the sources , i.e. the first pressure layers.

Future Developments
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The basic structure of the PINN was derived through the
Autokeras framework. Starting from this structure, a PINN was
trained with the following loss function for each input tensor,
where we will call 𝑠𝑙 the starting layer of the i-th example,
𝑦!"#$ the predicted output tensor and 𝑦%"&# the reference
output tensor.

𝑆! = (𝑐𝑜𝑣_𝑚𝑎𝑡𝑟𝑖𝑥(𝑠𝑙))-1
𝑑𝑖𝑓𝑓 = 𝑦"#$% 𝑖 − 𝑦&#%' 𝑖
𝑙𝑜𝑠𝑠(𝑖) = 𝑑𝑖𝑓𝑓 ∗ 𝑆! ∗ 𝑑𝑖𝑓𝑓T

Compression Data: Averaging Kernels and Principal Component Analysis

Principal Component Analysis
PCA was applied to both spectra and vertical profiles of methane and temperature, for which a
different projection basis was calculated for each starting layer in the dataset. To obtain 99.99% of the
variance explained, 20 PCs for the spectra, 24 PCs for the methane profiles and 16 PCs for the
temperature profiles, respectively, are required.

“PINN 0” model:
The “PINN 0” model is most accurate when
evaluated over all pressure layers, while it performs
slightly worse in finding sources. The mean absolute
error, calculated on all IASI pressure levels, is equal
to 30 ppbv. This model is therefore useful for
estimating the column content of methane.

• We would like to further validate the network with IASI data related to sources and background;
• We intend to expand the training dataset by adding more sources. This increase would provide the network with more examples and greater variability, allowing it to better learn the characteristics of the

methane sources and, consequently, make more accurate predictions.

Averaging Kernels
The AK matrix, was calculated starting
from the core of the CH4 band in the
infrared (wavelength number 1305 cm-1)
by broadening the spectral range under
analysis step by step. The study showed
that the maximum amount of
information, relating to CH4 profiles, is
obtained between the wavenumbers
1180 cm-1 and 1430.25 cm-1 (1001
channels). We also note that the
information from the spectra referring to
methane profiles is lacking around 1000
and 55 hPa.
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