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Strategy 

Complete picture -> multiple datasets 

However, sophisticated measurements constrained by limited sampling density.

Constructing a more complete dataset by Artificial Neural Network (ANN) techniques.

-> 3D Snapshots at 4 specific observation times 

-> Process-oriented analyses

•Latent heat release and its fluctuations are central to the interactions within Earth's water and energy cycles, with radiative 

heating (RH) of upper-tropospheric (UT) clouds further enhancing this energy reservoir by at least 20% [Li et al., 2013, 

Stubenrauch et al., 2021].

•What is the relationship between latent heating (LH) and radiative heating in mesoscale convective systems (MCS) ?

TRMM radar  (2004 - 2018)

CALIPSO lidar (2006-2010)       
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IR souder
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AIRS (2004-2018) 

Key Questions 2



Expand radiative heating rate across AIRS/IASI swath by ANNs

3D snapshot reconstruction using synergistic data & Machine Learning

CIRS (Clouds from IR Sounders) :

 only cloud height & emissivity

Vertical structure, radiative heating rate & 

precipitation: 

CloudSat-CALIPSO only on narrow nadir 

tracks

(Stubenrauch et al. 2021)

https://gewex-utcc-proes.aeris-data/fr
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Machine learning - Artificial Neural Networks (ANNs)

Use derived atmospheric properties (similar for AIRS & IASI) :

X : CIRS cloud variables & ERA-Interim atmosphere, surface 

F(X) : CloudSat-lidar radiative heating rates, Ztop & Ztop-Zbase, cloud layering, rain rate  

from NASA, FLXHR v4, GEOPROF,  PRECIP-column

X  Data

ANN model

Expanded radiative heating rates is now available: 

F’(X)  Answers

F(X)  Target

https://gewex-utcc-proes.aeris-data/fr


Expand latent heating rate across AIRS/IASI swath by ANNs

AIRS swath 70%

3D snapshot reconstruction using synergistic data & Machine Learning 4

use derived atmospheric properties (similar for AIRS & IASI) :

X : CIRS cloud variables & ERA-Interim atmosphere, surface 

F(X) : Latent heating from TRMM SLH profiles L3 day V06 [Shige et al., 2009], fractions of cloud type, 

clear sky, rainy area and heavy rain area.

TRMM radar statistically samples diurnal cycle, but…

at specific local time (1h30 AM), only covers 3%

Rain rate classification from AIRS ML-CloudSat for scene identification:  no rain, light rain, heavy rain

IASI swath 77%



Rain rate intensity is largest for opaque, thickest and highest clouds! 

no rain  66%

light rain 25%

heavy rain 9%

Relationship: rain intensity-cloud properties 5

EPS(emissivity) Normalised vertical extent Ztop   



LW  Ocean

Good predicted mean,
Underestimated predicted variability

Evaluation of ANN radiative and latent heating 6

Good predicted mean,
Good predicted variability

LH  Ocean

LW radiative heating rates from Calipso-CloudSat

LW radiative heating rates from ANN prediction

Latent heating rates from TRMM

Latent heating rates from ANN prediction



Coherence between TRMM-SLH and ANN predicted LH 7

Vertically integrated LH over all scenes

Over ocean, the zonal averages of LH at 1:30 

AM&PM agree well with TRMM-SLH complete 

diurnal sampling. 

Over land, we miss strong convection of late afternoon.



Coherence between TRMM-SLH and ANN predicted LH 8

Vertically integrated LH over all scenes

Over ocean, the zonal averages of LH at 1:30 AM&PM 

agree well with TRMM-SLH complete diurnal 

sampling.

While the sampling at 9:30 slightly underestimates LH



Coherence between TRMM-SLH and ANN predicted LH 9

Vertically integrated LH over all scenes LH profiles of rainy scenes

Shapes of ocean/land profiles are different, as expected 

with a larger contribution of low level clouds over 

ocean.

Diurnal cycle as expected:

Over ocean: maximum convection over early morning

Over land: maximum convection in the evening

Over ocean, the zonal averages of LH at 1:30 AM&PM 

agree well with TRMM-SLH complete diurnal 

sampling.

While the sampling at 9:30 slightly underestimates LH



3D structure of diabatic heating

Contrasting La Niña and El Niño events
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Atmospheric Cloud Radiative Effect (ACRE): the difference in cloud radiative effects between the TOA and the surface

ACRE = ∫ HR dp –  ∫ HRclr dp

(a)

(c)

(b)

(d)

La Niña (Jan 2008) El Niño (Jan 2016)



(a) (b)

Diabatic heating of mesoscale convective systems of different intensities 12

Heavily raining MCS produce largest LH; 

Deep convection can also be distinguished by large MCS size or large cooling above MCS cores

MCS reconstruction using CIRS  Pcld and εcld (Stubenrauch 

et al. 2023)

Collocation with ML diabatic heating(only orbits)

Cooling above MCS core increases with opacity 

A proxy of deep convection 



ACRE modulation by MCS size 13

•Convective organization enhances ACRE by up to 20 Wm-2. The effect is decreasing towards larger rain intensities, as ACRE saturates.

•More organized MCSs show larger vertical heating gradients at similar rain intensities.

•This additional ACRE and vertical heating gradients support stronger, sustained convection and impact large-scale environments.

(a) (b)
Proxy for convective organisation: 

MCS size at the same rain intensity (LP) 

Proxy for mature MCS: 
Core Fraction: 0.4-0.6



Summary and Outlook

•We reconstructed longterm datasets of 3D radiative and latent heating at 4 observation times using ANN.

•Over ocean, the zonal averages of latent heating at 1:30 AM&PM agree well with TRMM-SLH complete diurnal sampling, 

while the IASI sampling at 9:30 slightly underestimates latent heating. Over land, we miss about 30% of latent heating due 

to strong convection of late afternoon.

•This expansion allows us to study horizontal fields of diabatic heating, in particular within MCSs.

•Convective organization enhances ACRE, in particular for MCSs with small rain intensity; more organized MCSs show 

larger vertical heating gradients, supporting stronger and sustained convection. 
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Future Plans:

•Future studies should consider the environment surrounding MCSs and incorporate the time dimension.

•The distribution of UT clouds and their environment in the LP–ACRE plane can be used to evaluate climate simulations. 

(In cooperation with Laurent Li, LMD)

•The CIRS (AIRS & IASI) datasets have been recently reproduced by AERIS, using ERA5 ancillary data: (2004-present). 

We foresee to retrain all ANNs and reproduce the CIRS-ML dataset (2004-present)
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