

Spatiotemporal variability of ammonia (NH₃) derived from the future IRS geostationary satellite and IASI observations

LATM

NADIR GUENDOUZ¹, CAMILLE VIATTE¹, ANNE BOYNARD^{1,2}, SARAH SAFIEDDINE¹, CARSTEN STANDFUSS², SOLÈNE TURQUETY¹, MARTIN VAN DAMME^{3,4}, LIEVEN CLARISSE³, PIERRE COHEUR³, PASCAL PRUNET², AND CATHY CLERBAUX^{1,3}

1.LATMOS/IPSL, SORBONNE UNIVERSITÉ, UVSQ, CNRS, PARIS, FRANCE.

2. SPASCIA, RAMONVILLE-SAINT-AGNE, FRANCE.

3. UNIVERSITÉ LIBRE DE BRUXELLES (ULB), SPECTROSCOPY, QUANTUM CHEMISTRY AND ATMOSPHERIC REMOTE SENSING (SQUARES), BRUSSELS, BELGIUM.

4. ROYAL BELGIAN INSTITUTE FOR SPACE AERONOMY, BRUSSELS, BELGIUM

Atmosphere simulation

Synthetic spectra

Introduction

- Ammonia is an atmospheric pollutant mainly emitted by **agricultural activities** (accounts for 94% of total NH₃ emissions)
- Ammonia has an impact on the **environment** [Hernández et al., 2016; Rockström et al., 2009] and human health [Pope et al., 2002; Myhre et al., 2013]
- However measuring ammonia is very difficult, with lack of • diurnal variability and local scales observations [Von Bobrutzki et al., 2010; Twigg et al., 2022]
- Hopefully, IRS, an European geostationary satellite will be launched next year to fulfill this gap

Objective : prepare IRS observations to study spatio-temporal variability of NH₃ at regional and local scales

Uncertainties

Conclusion

- Other

Source : European Environment Agency

Instrumental characteristics of IASI and IRS

	IASI
Spatial resolution (nadir)	12 km
Temporal resolution	Twice a day 9:30 AM - 9:30
Spectral resolution (after apodisation)	0.5 cm ⁻¹
Spectral bands	645cm ⁻¹ – 2760

→ quantify the IRS integrated uncertainties of ammonia concentrations due to the measurement noise and compare them to the IASI ones

Uncertainties

Conclusion

IRS

4 km X 4 km

PM

Every 30 minutes (Europe)

0.754 cm⁻¹

0cm⁻¹

700cm⁻¹ - 1210cm⁻¹ and 1600cm⁻¹ -2175cm⁻¹

Atmosphere simulation

Synthetic spectra

Methodology

This study is made over the first NH₃ emitted region of France: Brittany

Uncertainties

Conclusion

Theoretical characterization of NH₃ uncertainties due to the measurement noise

Atmosphere simulation

Synthetic spectra

nimere

for July 2016

 \bullet

•

•

 \bullet

CHIMERE simulation for July 2016

Uncertainties

Conclusion

Realistic atmosphere simulation

Hourly simulation with a spatial resolution of 4 km × 4 km

Urban Heat Islands (UHI) around major cities on the 2meter temperature map

High total column of NH₃ around Orléans

Orléans is an agricultural region (25,000 farms), similar to Brittany (27,000 farms)

Pixel size for IRS-MTG

Uncertainties

Conclusion

Realistic atmosphere simulation

6/21

Atmosphere simulation

Synthetic spectra

CHIMERE : A realistic atmosphere?

Uncertainties

Conclusion

PM

Atmosphere simulation

Synthetic spectra

Methodology

Realistic atmosphere simulation

CHIMERE Model

Synthetic spectra and Jacobians from IRS and IASI

Radiative transfer (4A/OP)

Uncertainties

Conclusion

Theoretical characterization of NH₃ uncertainties due to the measurement noise

Atmosphere simulation

Synthetic spectra

4A/OP

Radiative transfer code : 4A/OP

Climatology (a priori profiles)

ISRF

CHIMERE (simulated profiles)

Instrumental parameters

Uncertainties

Conclusion

Synthetic spectra and Jacobians from **IRS and IASI**

Simulated spectra

Simulated jacobians

Simulated spectra for IASI and IRS

10/21

Atmosphere simulation

Synthetic spectra

Simulated NH₃ Jacobian for IASI and IRS

Uncertainties

Conclusion

300 2 ature 275 Tempera mmm 250 Brightness 7 1025 1075 1050 1100 -2e-07 -6e-08 5e-08 300 2 Temperature (wwww Brightness T 1025 1050 1075 1100 -6e-08 -2e-07 5e-08

Synthetic spectra and Jacobians from **IRS and IASI**

Atmosphere simulation

Synthetic spectra

Methodology

Realistic atmosphere simulation

CHIMERE Model

Synthetic spectra and Jacobians from IRS and IASI

Radiative transfer (4A/OP)

Uncertainties

Conclusion

Integrated components of NH₃ uncertainty

Estimation of the integrated NH₃ concentrations uncertainties due to the measurement noise from the Jacobians (K) and the noise covariance matrix [Rodgers (2000)]

- $K : NH_3$ Jacobian ($W/(m^2.sr.cm^{-1})/(molecules/cm^2)$) \bullet
- Sε : Full Instrumental Noise Covariance Matrix(W/(m².sr.cm⁻¹))²
- *S* : Measurement Uncertainty Matrix (molecules/cm²)²

- L(X) : Radiance spectra (W/(m².sr.cr
- $X: NH_3$ total column (molecules/cm
- dX : 0.1% increment of the total col

Uncertainties

Conclusion

Theoretical characterization of NH₃ uncertainties due to the measurement noise

Atmosphere simulation

Synthetic spectra

Example for the 19th of July 2016 at 1AM NH₃ uncertainties due to IRS measurement noise NH₃ total column

$TC = T_{skin} - T_{600m}$

Uncertainties

Conclusion

Theoretical characterization of NH₃ uncertainties due to the

NH₃ Jacobian

Atmosphere simulation

Synthetic spectra

Distribution of integrated ammonia uncertainty

How to reduce NH₃ uncertainties due to IRS measurement noise?

Uncertainties

Conclusion

Theoretical characterization of NH₃ uncertainties due to the measurement noise

average NH₃ incertainties due to IRS measurement noise is more than twice higher than the IASI ones when considering coincident observations in space and time

Reduction of NH₃ uncertainties due to the measurement noise through temporal averaging

Uncertainties

Conclusion

Theoretical characterization of NH₃ uncertainties due to the measurement noise

Reduction of NH₃ uncertainties due to the measurement noise through temporal averaging

By averaging the IRS uncertainties between 8 AM and 9 AM, IRS uncertainties are **3.7 times lower** than those of IASI for the AM overpass (5.8 times lower for the PM overpass)

[Guendouz et.al., in prep 2025]

Uncertainties

Conclusion

Theoretical characterization of NH₃ uncertainties due to the measurement noise

Reduction of NH₃ uncertainties due to the measurement noise through spatial averaging

Case study IRS pixel

8	1	2
7		3
6	5	4

8	1	2
7		3
6	5	4

IRS IASI shape

8	1	2
7		3
6	5	4

8	
7	
6	

Uncertainties

Conclusion

Theoretical characterization of NH₃ uncertainties due to the measurement noise

IRS 2 pixels

3
4

Reduction of NH₃ uncertainties due to the measurement noise through temporal averaging

By averaging the IRS observations over 2 pixels, the NH₃ uncertainties related to the measurement noise of IRS are 5.6 times lower than those of IASI [Guendouz et.al., in prep 2025]

Uncertainties

Conclusion

Theoretical characterization of NH₃ uncertainties due to the measurement noise

19/21

Conclusion

- This study aims to prepare the IRS mission in terms of NH_3 observations by • quantifying the integrated uncertainties due to the measurement noise and compare them to the IASI ones.
- For this, the CHIMERE model and 4A/OP radiative transfer code have been used and adapted to best reproduce the future IRS observations over the first NH₃ emitted region of France: Brittany.
- We found that NH₃ uncertainties due to IRS measurement noise are 2 times ullethigher than the IASI ones when considering the same overpass time (9 AM and PM).
- These uncertainties are significantly reduced (by at least a factor of 4) when ulletaveraging 2 hours or 2 pixels of IRS measurements, which will be useful to study NH₃ diurnal variabilities or local sources.
- This shows the potential of the future IRS mission to monitor NH_3 spatial-variabilities.

Thank you for your attention !

Thanks to CNES and SPASCIA for co-funding this thesis

www.latmos.ipsl.fr

