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- Introduction to atmospheric water vapour isotopologues
- Our IASI retrieval processor “MUSICA*” and the isotopologue data set
- Example of moisture transport studies using water vapour isotopologue data
- Conclusion

*MUSICA: MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water



Water vapour isotopologues
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pressure
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▪ Lighter isotopes evaporate preferentially.
▪ Heavier isotopes condensate preferentially.
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Typical range for water vapour in the
tropical mid-troposphere
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17O HDO …

Rvsmow 0.201 % 0.039 % 0.031 % …

Isotope ratio changes with
phase transitions! Unique potential for tracking moisture processes
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The MUSICA IASI retrieval
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Individual optimal estimation 
of H2O and HDO

(1+2) Optimal estimation 
of H2O and δD proxies

(3) Post processing:
generation of {H2O,δD} pairs

This is the MUSICA IASI 
{H2O,δD} pair product!

MUSICA IASI retrieval output 

Optimal estimation of trace gas ratio data (isotopologue ratios are the interesting data):

(1) Transfer the problem to the logarithmic scale: 𝜕ln𝑥 =
1

𝑥
𝜕𝑥

(2) Optimal estimation of ratio (δD) proxies: ln
ො𝑥HDO

ො𝑥H2O
=  ln ො𝑥HDO − ln ො𝑥H2O 

(3) Post-processing to generate H2O and δD products having the same sensitivity:{H2O,δD} pairs
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The MUSICA IASI retrieval
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DOFS

Examples of averaging kernels

Typically 10% (H2O) and 10-20‰ (δD) 

Uncertainties

Validation with GRUAN and dedicated aircraft campaign
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Borger et al., 2017; Diekmann et. al. 2021; Schneider et al., 2016



Pairs of H2O and δD (2014 – 2021, >2 billion data pairs) 
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Pairwise analysis of H2O and δD
in water vapour

Global H2O-distribution in mid-tropospheric
water vapour

Schneider et al. (2016)
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Effects of different moisture processes
become visible when analysing the

{H2O, δD}-pair distribution
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Mixing of air
masses
Mixing curves for
air mass mixing
without
fractionation

Rayleigh Condensation
Rain condensation during
moist adiabatic ascent

Super-Rayleigh Signals 
Special case of Rayleigh 
condensation, which is
overlaid by partial rain 
evaporation and equilibration

Noone et al, 2012; Diekmann et al, 2021b

δ
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‰

)

Theoretical process lines in the {H2O, δD} phase space

Cloud processes:

Airmass mixing (no phase transitions, e.g., Saharan Air Layer):

Moisture transport with {H2O,δD} (Rayleigh and beyond)
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Serves also as process-based validation of the MUSICA IASI {H2O,δD}-pair distribution (Schneider et al., 2016) 
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Well-studied airmass mixing (Saharan Air Layer):

Moisture transport



ω [hPa/day] profiles

shallow = 
aggregated

deep = unaggregated

deep = 
unaggregated

shallow = aggregated

Moisture transport
Galewsky et al. (2023): Convective intensity, convective organization, and mid-tropospheric water vapour isotopologues
Identification of convection has been made with OLR minima.
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Moisture transport



Covariation of West African Monsoon precipitation intensity and  middle tropospheric water vapour 
isotopologues, Diekmann et al., 2024

Study using middle 
tropospheric 
{H2O,δD} data 
from IASI and ARIS 

2017: weakest HDO depletion (weakest super-Rayleigh 
signal), less intense convection, lowest mean rainfall 
2015-2017 versus 2018-2020: super-Rayleigh signal, more 
intense convection. increasing peak rain intensity

Moisture transport
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The LETKF assimilation system

Figure taken from Yoshimura et al. (2014)

If 𝐒𝑡𝑖

𝑏,𝐼→𝐴 = 𝐒𝑡𝑖

𝑏,𝐴→𝐼 ≠ 0, the isotopologue 

observations (𝑦𝐼) will have an impact on 
the analysed atmospheric fields  (𝑥𝑎,𝐴).

Data assimilation, basic equations

𝑥𝑎 𝑡𝑖 = 𝑥𝑏 𝑡𝑖 + 𝐆𝑡𝑖
𝑦 𝑡𝑖 − 𝐇𝑡𝑖

𝑥𝑏 𝑡𝑖  

 

𝐆𝑡𝑖
= 𝐒𝑡𝑖

𝑏 𝐇𝑡𝑖
𝑇 𝐇𝑡𝑖

𝐒𝑡𝑖

𝑏 𝐇𝑡𝑖
𝑇 + 𝐒𝜀

−1
  

   
Variables and operators:
𝑡𝑖 : time step
𝑥𝑎(𝑡𝑖): analysed state vector
𝑥𝑏(𝑡𝑖): background (or forecast) state vector
𝑦(𝑡𝑖): measurement state vector (the observation) 
𝐆𝑡𝑖

: Kalman gain matrix

𝐇𝑡𝑖
: measurement forward operator matrix

𝐒𝑡𝑖

𝑏 : background state error covariances matrix

𝐒𝜀: measurement state error covariances matrix

𝐒𝑡𝑖

𝑏 =
𝐒𝑡𝑖

𝑏,𝐴→𝐴 𝐒𝑡𝑖

𝑏,𝐼→𝐴 = 𝐒𝑡𝑖

𝑏,𝐴→𝐼

𝐒𝑡𝑖

𝑏,𝐴→𝐼 = 𝐒𝑡𝑖

𝑏,𝐼→𝐴 𝐒𝑡𝑖

𝑏,𝐼→𝐼  

𝐆𝑡𝑖
=

0 𝐒𝑡𝑖

𝑏,𝐼→𝐴𝐇𝑡𝑖
𝐼→𝐼𝑇

(𝐇𝑡𝑖
𝐼→𝐼𝐒𝑡𝑖

𝑏,𝐼→𝐼𝐇𝑡𝑖
𝐼→𝐼𝑇

+ 𝐒𝜀
𝐼 )−1

0 𝐒𝑡𝑖

𝑏,𝐼→𝐼𝐇𝑡𝑖
𝐼→𝐼𝑇

(𝐇𝑡𝑖
𝐼→𝐼𝐒𝑡𝑖

𝑏,𝐼→𝐼𝐇𝑡𝑖
𝐼→𝐼𝑇

+ 𝐒𝜀
𝐼 )−1

   

Data assimilation of water isotopologues
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(Almost) no observations 
assimilated for ω < -0.2 Pa/s BUT: strongest impact of δD observations for ω < -0.2 Pa/s 

Schneider et al., 2024: “Potential of satellite water isotopologue observations for improving the analyses of 
convective events”  

Data assimilation of water isotopologues



- MUSICA IASI {H2O,δD}-pair data: about 2 billion data points, 2014 – 2021: 
https://www.imk-asf.kit.edu/english/musica-data.php

- Mid-tropospheric {H2O,δD}-pair distributions give (detailed) insights into convective processes:
      Monitoring of the occurrence of different convection types?
- Assimilation of isotopologues can improve the (re-)analysis of a convective atmosphere: 
      Benefit for detecting trends in the atmospheric water cycle (e.g., changes of convective
      intensity/occurrence)?

Conclusion

Thanks for your attention!

https://www.imk-asf.kit.edu/english/musica-data.php
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MUSICA IASI datasets of {H2O, δD} pairs

• Up to 3 satellites in orbit, allowing up to 500.000 cloud-
free quality-filtered and vertically resolved HDO/H2O 
observations per day  

• Continuity of data availability over several decades

• Current status of data availability (MUSICA IASI processor): 
full long-term dataset (> 6 years, > 2 billion data points), 

• IASI Retrieval: Schneider et al (2022)

• {H2O, δD} post-processing: Diekmann et al (2021)

MUSICA IASI {H2O, δD}

Timeline of Metop satellites

Unique potential of IASI

Daily maps of IASI {H2O, δD} data

• Morning and evening overpasses 
• Two global maps per day
• Cloud-free pixels
• Focus on free troposphere (~ 4.2 km)
• Usage of flags for quality filtering



Example West African Monsoon, Diekmann et al., 2024

Classification: rain versus non-rain (IMERG)

{H2O,δD} distribution: rain versus non-rain 

Guinea Coast: generally positive correlation 
between H2O and δD
Sahel: super-Rayleigh {H2O,δD} distribution 
significantly more frequent after rain events. 
-> Anti-correlation between H2O and δD.  

Figures adopted from Diekmann et al. (2024)

Moisture transport
Anti-correlation 

between H2O and δD


