

Study of greenhouse gases emitted by biomass burnings with a decade of infrared observation of CO₂, CH₄ and CO by IASI

Victor Bon, Cyril Crevoisier, Virginie Capelle and Nicolas Meilhac

Laboratoire de Météorologie Dynamique/IPSL, CNRS, Ecole Polytechnique, Université Paris-Saclay, 91128, Palaiseau, France

Contact: victor.bon@lmd.ipsl.fr

Atmospheric Concentrations : overview of IASI

Satellite observations by IASI:

- **Polar orbital satellite:** observations at 09:30 AM/PM LT.
- Long time series (2007-now with the 3 IASI instruments).
- Retrieval of mid-tropospheric CO₂, CH₄ and CO by neural network inversion (Crevoisier et al. (2013 and 2018)).
- Partial column product of CO₂ concentration between 500 hPa and 200 hPa (5-12km in tropics).

Question:

How can we analyse the contributions of biomass burnings emissions in the mid-tropospheric CO_2 concentrations?

Analyzing biomass burning contributions: Daily Tropospheric Excess

Mid-toprospheric gas and its link with biomass burnings:

- Daily Tropospheric Excess (DTE) method:
 - For CO₂ with Chédin et al. (2005, 2008) and CO with Thonat et al. (2013, 2015)
 - Pyro-convection Rio et al. (2008, 2010)
 - Diurnal fire cycle

My work: Add the impacts of transport and fire intensity on the variations of concentration.

Computing CO₂ anomalies

Challenges with anomalies of CO_2 :

- High background value but small variations
- Concentrations increase trend.
- Concentrations are latitudinal-dependent.

- Moving ±2° latitudinal band
- Calculate the background only on oceans

CO₂ mean anomalies in ppmv for 04/08/2020

CO₂ mean anomalies and fire activity

A qualitative hypothesis of biomass burnings contribution:

FRE

- Significative anomalies (>4 ppm):
 - To the east of Argentina.
 - Over the Cerrado region
 - Extensions toward the Atlantic. •

Fire Radiative Energy (FRE) in GW

Vertical transport by pyro-convection? Horizontal transport?

Methodology for linking anomalies to fires

A combination of CO₂ anomalies, transport and fires activity:

- Selection of anomalies: For each IASI observations (09:30 AM and 09:30 PM), anomalies > 4 ppm are identified.
- **Backward trajectories:** Generate backward trajectories from the identified anomalies.
- Fire Radiative Power (FRP) collocation: For each hourly time step, collocate backward trajectory points with the hourly sum of FRP within a 1° radius.
- Detection of the FRP max for backward trajectories: Selection of the maximal FRP contribution along the entire trajectory from all hourly collocations of each of backward trajectories.

```
Focus on very big fires > 10 GW (pyroconvection from 5 GW in Tory, K. J., et al 2021)
```


Seasonal analysis of anomalies and FRP max

Methodology on the total fire season in South America for 2020 with FRP > 10 GW and for 09:30 AM/PM observations:

Refining with FRP threshold

Identification of local contribution by FRE threshold for pyro-convection:

Seasonal Analysis of Anomalies and FRP

Methodology on the total fire season in South America for 2020 with no FRP threshold and for 09:30 PM observations:

Identification of long-range contribution from fires

48 hours backward trajectories for anomalies in South America for 04/08/2020 evening:

Identification of long-range contribution from fires

10 days backward trajectories for anomalies in South America for 04/08/2020 evening:

Conclusions and perspectives

Conclusions:

Findings:

 \rightarrow We linked variations of CO₂ in the mid-troposphere to detected fires intensity.

- New approach that add transport and fire intensity analysis.
- Biomass burning emissions influence mid-tropospheric CO₂ concentrations through:
 - Local sources (strong correlation: 0.95 with 10 GW threshold) by pyro-convection.
 - From long distance transport (in particular tropical fire regions contributions).

→ Publication in process

Perspectives:

- *Multi-species analysis*: CO₂ but also CH₄ and CO associated with fire intensity to better understand combustion effect.
- *Tropical region analysis:* etend to the other contributing tropical regions, based on geostationary fire detection.