

Introduction of the side meeting objectives and content

Cyril Crevoisier

- With the fast coming launch of Metop-SG-A1, the organization of cal/val activities is essential.
- Several activities are planned by the agencies at Level1 and Level2
 - Detailed in IASI-NG L2 cal/val plan available on EUMETSAT website (link to come...)
 - Operational monitoring of Level1 and several Level2
 - → See presentation by Simon Warnach
- Additional 'scientific' cal/val activities are planned by the scientific community at Level 1 and Level 2
 - General overview in IASI-NG Science Plan written by ISSWG
 - → https://www-cdn.eumetsat.int/files/2020-04/pdf science epssg iasi ng plan.pdf
 - Suggested activities: Mostly campaigns and comparison with models, but also needs for regular measurements

• Specific discussions have taken place in some ISSWG meetings to start exploring available means and lessons

learned from previous cal/cal campaigns.

IASI-NG Science Plan Prepared by the IASI Sounding Science Working Group Editors: Fiona Smith and Cyril Crevoisier v 1.0, December 2018

9	Cali	ibratio	n and V	alidation	143
	9.1	User c	ontributio	ons to calibration and validation activities	144
	9.2	An air	borne der	nonstrator for IASI-NG	145
	9.3	Syners	gistic Cal	Val activities	146
		9.3.1	Some ex	amples of post-2022 campaigns already planned	146
			9.3.1.1	The MAGIC initiative - multi-instrument campaigns with ground-	
				based and airborne measurements	146
			9.3.1.2	The Stratéole 2 campaign	147
			9.3.1.3	CNES annual balloon campaign	148
		9.3.2	Validatio	on using NWP model data	149
			9.3.2.1	Level 1	149
				5	

• Specific challenges:

- IASI-NG will detect/measure a large number of geophysical variables
- Need to quantify the improvement from going from IASI to IASI-NG

Product	Vertical Resolution	Accuracy	Reference data source
Temperature profile	LT, MT: 0.8 km UT, S: 2 km	LT, MT: 0.8 K UT, S: 1.2 K	Sondes RO dry-T strato NWP analysis Can we demonstrate 0.8K?
Specific humidity profile	LT: 1.2 km MT, UT: 1.5 km S: 3 km	LT: 5 % MT, UT: 7 % S: 20 %	Sondes NWP analysis Ground-based Lidar, MWR Can we demonstrate 5%? Other? LHD?
Water vapour total column	N/A	5 %	Ground-based GPS High resolution radiometer? Other?

Product	Vertical Resolution	Accuracy	Reference data source
	N/A	0.3 K	Buoys
Sea surface			OSTIA
temperature			High resolution LEO/GEO radiometers
	N/A	1 K	Ground-based radiometers
Land surface temperature			Space-based high resolution radiometers, e.g. SEVIRI LSA
Ice surface		1 K	In situ measurements
temperature	N/A		High-resolution radiometers?
Land and ice surface	N/A	1 %	Direct measurments?
emissivity	, .	_ ,0	Aircraft (ARIES?)

Product	Vertical Resolution	Accuracy	Reference data source
Carbon	3 km	3 km LT: 30 %	In situ measurements (airborne, ground)
monoxide		MT: 25 %	Space-borne missions?
profile		HT, S: 20 %	Other?
Carbon monoxide partial column	3 km	10 %	NDACC ground stations
	3 km	LT,MT, UT:	O ₃ sondes
Ozone profile		20 %	Other space missions?
		S: 10 %	Model?
Ozone total column	N/A	5 %	Ground Brewer, Dobson
Sulphur dioxide total column	N/A	50 %	?
Nitric acid partial column	T, S	20 %	NDACC?

Product	Vertical Resolution	Accuracy	Reference data source
Cloud detection and	6 km	10 %	GEO/LEO imagery
fractional coverage	O KIII	10 70	Ground-based WSI, other?
Cloud top phase	N/A	10 %	???
Cloud top height	N/A	0.2 km	Ground-based cloud radar, Lidars
/pressure			Space-based active sensors
, , , , , , , , , , , , , , , , , , ,			(CALIPSO, EarthCare)
Cloud drop effective			
radius at cloud top	N/A	5 μm	???
	N/A	5 %	Ground-based radar, MWR?
Cloud liquid water			Space-borne data: EartCare,
path from MWS and IAS			CloudSat?
IAS			Can we demonstrate 5%?

Product	Reference data source		
Dust AOD at 10 μm	GEO/LEO imagery		
Dust AOD at 10 μm	Aeronet		
Dust mean altitude	Ground-based and airborne lidars, space lidars		
Effective radius	?		

- Specific challenges:
 - IASI-NG will detect/measure a large number of geophysical variables
 - Need to quantify the improvement from going from IASI to IASI-NG
 - Short-term vs. long-term activities
 - → here, the focus will be on short-term.
 - → e.g. the IASI-IASI-NG tandem flight
 - IASI-NG won't be alone on Metop-SG-A1.
 - → Need for synergies with other missions planned activities
 - Network development, instrument deployment and field campaigns require huge efforts in terms of preparation, logistics, human resources and budget.
 - → Need to plan activities now
 - → Build on existing/planned activities (either validation or science oriented)

Two sessions devoted to validation:

- The 'Validation session' (4 talks and 1 poster)
- A dedicated 'Side session' for discussion

Objectives of the side session:

- To gather the feedback from the community concerning the needs for validation activities
- To discuss existing/planned instruments/campaigns and how they can support IASI-NG validation
- To design specific/missing activities
- To explore potential synergies with other missions (Metop-SG-A, MTG, EE, others)

Date and time:

- Today at 16:15
- In parallel to the poster session
- Place: Room 102

Everybody is welcome to shape (and participate to) the future IASI-NG validation activities!!