IASI Conference

December 2024

On the road to MTG IRS retrieval of CO using interferograms – case of IASI

Nejla Ećo¹, Sébastien Payan¹, Laurence Croizé²

(1) LATMOS, Sorbonne Université (2) DOTA, ONERA, Université Paris Saclay

ERIS

Contact : nejla.eco@latmos.ipsl.fr

ONERA

Background

- Carbon monoxide
 - Key component in the atmospheric chemistry
 - Anthropogenic activity (transport, heating, industry)
 - Fires
- Satellite observations for monitoring CO
 - Maps of column density¹
 - Flux emissions/origins of the plumes
- Large amounts of data
 - time consuming for full physics retrieval
- Earth atmosphere observation missions based on Fourier Transform spectrometry => interferograms => radiances

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4 CO total column x10¹⁸ molecules/cm²

Figure 1 : Map of column density of CO¹

Introduction

- Useful information concentrated in a small portion of the interferogram²
- Interest demonstrated for the nadir measurement of atmospheric trace components (CO₂, CO, CH₄ and N₂O)³
- Potential future missions based partial interferograms⁴
- Accelerate retrieval
 - Selection of the best method (classification, principal component, random forest, NN, etc.)
 - Comparison to full physics retrieval

Figure 2 : Spectra and interferogram of the CO signature

Strategy

DATA

1. Full physics retrieval

• Optimal estimation method

2. Classification

• Quick estimation of CO column density

IASI simulations

- Radiative transfer code LARA⁵
- Spectra back to the interferogram domain
- 64680 interferograms

IASI* observations

 Real observations to interferograms

Simulated data : forward

- LARA to simulate HR spectra
- 2311 TIGR* atmospheric states
- 7 surface temperatures
 - Thermal contrast study
- 4 CO profiles
 - Different CO concentrations

Figure : CO profiles used for simulations

Interferogram simulations : forward

Retrieval approach

- Line by line radiative transfer model LARA retrieval algorithm⁵
- Previously used for limb IR balloon spectroscopy and IASI satellite measurements analysis, etc.
- LARA modified for retrieval from interferogram
- Inputs:
 - HITRAN 2016: spectroscopic parameters
 - T and H₂O vertical profiles: Thermodynamic Initial Guess Retrieval (TIGR)*
- CO Full physics retrievals :
 - State vector = T_{surf} , H_2O , CO_2 , O_3 , N_2O , CO scaling factor
 - Spectrum window: 2150 2250 cm⁻¹
 - Interferogram window: 0 2 cm

Retrieval: spectra VS interferogram

- Preliminary results (22731 cases) : comparison of standard deviation
- Large variance a priori for parameters to be retrieved
- Same state vector (State vector = T_{surf} , H_2O , CO_2 , O_3 , N_2O , CO scaling factor)
- IASI noise (diagonal covariance matrix S_y)
- Retrieval for the same initial conditions for both spectrum and interferogram

	Interferogram	Interferogram	Spectrum	Spectrum
		stdv		stdv
Mean T _{surf}	269.41 K	0.046 K	269.43 K	0.043 K
Mean X _{H2O}	0.999	0.010	0.9795	0.050
Mean CO column	2.126x10 ¹⁸ molecules/cm ²	9.57x10 ¹⁶ molecules/cm ²	2.147x10 ¹⁸ molecules/cm ²	1.11x10 ¹⁷ molecules/cm ²

Classification: methods

- Quick prediction of surface temperature, CO and H₂O SCD for any interferogram
- Utilise only radiances at specific OPDs
- 2 different approaches based on data binning:
 - Radiance classes
 - Geophysical-parameter classes
- 1 Neural Networks approach

Schema 1: 3D control set

Classification: results Neural Networks

* Uniform random noise

Conclusion and outlook

• Full physics retrieval:

- Retrieval from interferograms overall better for retrieval of CO
- Test the impact of other parameters (line of view angle, surface albedo...)

• Classification :

- Provides faster predictions to conventional methods (MTG IRS- 4 min)
- Neural networks approach with higher accuracy
- Next steps:
 - Choice of noise
 - test retrieval on IASI "observed" interferograms* for both full physics retrieval and for classification

Thank you for your attention!

PhD funded by ED 129 and Sorbonne Université

Contact : nejla.eco@latmos.ipsl.fr

