

IASI-NG SYSTEM BUDGET

QUENTIN CEBE . IASI-NG PERFORMANCES MANAGER (1) Yannick KANGAH (2) Marie BOUILLON (2) Carsten STANDFUSS (2)

(1) CENTRE NATIONAL D'ÉTUDES SPATIALES (TOULOUSE, FRANCE)(2) SPASCIA (TOULOUSE, FRANCE)

IASI CONFERENCE 2024

December 02 > 06 2024 NANCY

Major requirements of IASI-NG

SPECTRAL	0.25 cm-1
RESOLUTION	(2 times better than IASI)
SPECTRAL	~17000 Spectral Channels
SAMPLING	(2 times better than IASI)
SPECTRAL CALIBRATION ERROR	dσ/σ=10 ⁻⁶ (2 times better than IASI)
SOUNDING PIXEL SIZE DIAMETER	12 km = Same as IASI
RADIOMETRIC	Bias ~ 0.25K
CALIBRATION	(2 times better than IASI)
RADIOMETRIC	NedT ~ 0.1K
NOISE	(2 times better than IASI)

RÉPUBLIQUE

Ligabai Fraternite cnes

SPECTRAL SHIFT

EVALUATION AT SYSTEM LEVEL

SHIFT OF THE ISRF

Mission Requirement

0.995

0.990

0.985

0.980

0.975

0.970

-RÉPUBLIQUE FRANCAIŠE

Égalité Fraternite cnes

SPECTRAL SHIFT

EVALUATION OF CENTROID SHIFT

Performance obtained on Gas Cells measurement is **not representative of in-flight process**

Thus system performance estimation is done using simulation and analysis rather than direct measurements

EVALUATION OF CENTROID SHIFT

$$n(\sigma)^2 = A + \sum_{i=0}^4 \frac{B(i)}{1 - C(i)^2 \times \sigma[\mu m^{-1}]^2}$$

However the analysis done on TVAC data is still important to ensure that the hypothesis upon which the operational procedure works is valid :

- The spectral shift is well modeled by the refractive index model
- That the evaluated function is smooth over the 4 bands
- That the evaluations have the same sensibilities to parameters between real measurements of gas cells and simulations of atmospheres

SPECTRAL SHIFT PERFORMANCE IN-ORBIT

		B1	B2	B3	B4
Algorithm Error		0.766 10 ⁻⁶	0.362 10 ⁻⁶	0.345 10 ⁻⁶	0.257 10-6
Refraction index representability	Chromatic LOS	0.25 10 ⁻⁶			
	dOPD estimation error residual	0.3 10 ⁻⁶			
Doppler residual		0.02 10 ⁻⁶			
Centroid shift stability		0.243 10 ⁻⁶		0.504 10 ⁻⁶	
Radiative Transfer Model		0.45 10 ⁻⁶			
	Total	1.00 10 ⁻⁶	0.74 10 ⁻⁶	0.85 10 ⁻⁶	0.82 10 ⁻⁶

Post-calibration error within one orbit

RADIOMETRIC PERFORMANCES

IMPACT ON ATMOSPHERIC SCENES

MODELISATION ON ATMOSPHERIC SCENES

The best path to knowledge is direct measurement.

Complex optical design

cnes

RÉPUBLIQUE FRANCAISE

Complex ISRF retrieval

ISRF specifications

These other specifications are also evaluated from specific measurements during TVAC; but we add a process to evaluate their impact in terms of radiometry

Additional verification that the specifications are adequate

Evaluation of the effect in case of exceeded requirements

RADIOMETRIC BUDGET

unknown author

MODELISATION ON ATMOSPHERIC SCENES

Liberté Égalité

Fraternité

cnes

VARIABLE EFFECT OF CONTRIBUTORS ERROR

CROSS-TALK

Jitter OPD

VARIABLE EFFECT OF CONTRIBUTORS ERROR

MICRO-VIBRATIONS

SHAPE ERROR INDEX

ISRF shape

SENSIBILITY TO ATMOSPHERIC LINES IN NEDT BUDGET

NEdT estimation with spectral and geometric contributors - 280K - Worst channels

ABSOLUTE MEAN OF CONTRIBUTORS ERROR

ISRF SHAPE

"UNMODELLED" PERTUBATIONS

Unmodelled bias

SENSIBILITY TO ATMOSPHERIC LINES IN ABSOLUTE RADIOMETRIC BUDGET

15

THANK YOU FOR YOUR ATTENTION

