

IASI-NG INSTRUMENT PERFORMANCES STATUS

A. PENQUER . IASI-NG INSTRUMENT MANAGER CENTRE NATIONAL D'ÉTUDES SPATIALES (TOULOUSE, FRANCE)

IASI CONFERENCE 2024

December 02 > 06 2024 NANCY

IASI-NG INSTRUMENT CONCEPT

- Significant performance improvement with wider field of view (factor 4), allowed by innovative instrumental concept proposed by Airbus Defence and Space
- Associated field effects are compensated in pupil by inserting dynamically variable glass thickness
- Achieved through 2 pairs of KBr prisms, synchronized via an unique device movement
 - First implementation in space of a Mertz Interferometer

IASI-NG OVERALL DESIGN

- Afocal and Imaging Telescopes
- Mertz Interferometer
- Focal Plane : 4 detectors for 4 spectral bands /16 sounding pixels per detector

• 5 metrology lasers:

- 1 central metrology to give the Optical Path
 Difference constant triggering
- 4 lateral lasers to monitor in real time the pupil effects (tilt, focus and astigmatism) for correction through on ground processing

	SPECIFICA	TIONS	
GEOMETRY	SOUNDER PIXEL SIZE	~12 km	SAME AS
	SPATIAL SAMPLING	~25 km	
	GEOLOCATION ERROR	0.5 km	
SPECTRAL	BAND	645 cm-1 to 2760 cm-1	
	RESOLUTION	0,25 cm ⁻¹	
	SAMPLING	0,12 cm ⁻¹	
	CALIBRATION ERROR	da/a= 5.10 ⁻⁷	
RADIOMETRY	CALIBRATION ERROR	0,25K @ 280 K	
	NEDT	NedT -0.1 K to 0.4 Kwithin spectrum	

MAIN CHARACTERISTICS				
SWATH	~ 2000 KM			
FOR	+/- 3°			
PUPIL DIAMETER	~ 90 MM			
ATA MAGNIFICATION	2.3			
MAXIMUM OPTICAL PATH DIFFERENCE	4,2 CM			
ACQUISITION DURATION	~730 MS			
SCAN LINE DURATION	15.6 s : 14 EARTH VIEWS + 1BB + 1CS			
CO-REGISTRATION	INTEGRATED IMAGER			
SPECTRAL CALIBRATION	FABRY PEROT SOURCE			

TER

C Liberté Égalité Fraternité cnes

IASI-NG CURRENT CONTEXT

- Proto-Flight Model integrated and tested in 2022.
 Verification incomplete due to issues during TVAC, and an anomaly in B4 band was found
- PFM delivered and mounted on Satellite to give priority to qualification at Satellite level (mainly mechanical and thermal); and then dismounted for open work activities
- In the meantime, FM2 integration and tests were done. Confirmation that no B4 anomaly on FM2 and formal decision to deliver FM2 as the first IASI-NG instrument for flight
- Handover to Satellite held on 10th September 2024 and mechanical mounting performed on 12th September

RÉPUBLIQUE FRANÇAISE Liberté Égalité Fraternité

IASI-NG CURRENT CONTEXT

IASI-NG FM2 PERFORMANCE VERIFICATION

- Performance verification is done in two steps
- TVAC for assessment of spectral and radiometric fine performances
 - 2 external warm black bodies and 1 cold black body for radiometric performances
 - 4 lasers for Instrument Spectral Response (+spectral calibration stability)
 - Gas Cell (+cold black body) for spectral calibration
 - Cold black body in front of Fabry Perot view
- Ambient test for geometric performances (LOS, IPSF, crosstalk)
 - Warm black body and collimator OGSE

RADIOMETRIC PERFORMANCES

- NedT higher than CDR prediction due to higher background flux (in phase opposition compared to usefull signal)
- Nevertheless, NedT @ 280K compliant with system specification over the whole spectrum excepted in limited spectral area
- Confirmation of strong improvement with regard to IASI 1st generation specification (on top of the 2 times better spectral resolution)

RADIOMETRIC PERFORMANCES

- Absolute calibration error in line with specification (+/-0.25K) for all tested cases (from 210K to 310K)
- Residual errors gives non compliances on interchannel and inter-pixel calibration error due to two major phenomena:
 - vignetting effect on extreme views due to scan sizing issue with regard to pupil real size
 - difficulty to correct detector NL: due to high background level in phase opposition, internal BB view does not cover the whole useful dynamic
- These NC have been presented at ISSWG and are acceptable

SPECTRAL PERFORMANCES

- ISRF with very good performances:
 - Very low µvibration peaks
 - No significant parasitic interferogram peak
 - Shape error index globally in line with CDR WC budget (this contributor is mainly a fixed one and induces a radiometric bias on atmospheric scenes)
- Improvement still possible by optimizing the model in the ground processing:
 - Beam Splitter mechanism sine mode used during TVAC allows an optimization of the model parameters by checking the correction efficiency of induced tilt by the sinus vibration
 - Could improve the shape error index

Performance	CDR WC budget	Measured Performance
Shape Error Index	B1: 1.7%	B1: 2.2%
	B2: 1.8%	B2: 2.0%
	B3: 2.5%	B3: 2.3%
	B4: 3%	B4: 2.7%
Un-modelled parameters	0.39%	<0.10%
OPD µvibrations	0.8% (0.5% RSS)	<0.33% (<0.2% RSS)
Contrast µvibrations	0.5% (0.44% RSS)	<0.40% (<0.2% RSS)

SPECTRAL PERFORMANCES: CALIBRATION

- Spectral calibration based on 6 parameters KBr index law applied over the full spectrum
- Gas Cell used to fit the law on reference lines, and centroid shift (spectral calibration error) is estimated with verification lines :
 - Mean residual error is only few 10⁻⁷
 - Rms residual errors is around 1 to 3.10-6 in B1 in WC, due to Gas Cell line knowledge and lack of lines in B1
- This very good results with "all bands" approach confirm the validity of the spectral law modelling
- It shows the compliance to the "a priori" knowledge of the centroid shift (10⁻⁴)

SPECTRAL PERFORMANCES: CALIBRATION

- The "a posteriori" knowledge specification supposing using perfectly known lines is 5.10⁻⁷
- Verification by using gas cell lines is limited
- On board Fabry Perot Interferometer is used on this purpose, as the Free Spectral Range is almost constant

SPECTRAL PERFORMANCES: CALIBRATION

- The "a posteriori" knowledge specification supposing using perfectly known lines is 5.10⁻⁷
- Verification by using gas cell lines is limited
- On board Fabry Perot Interferometer is used on this purpose, as the Free Spectral Range is almost constant
- Residuals between two reference FPI peaks is very low and <5.10⁻⁷
- Residuals higher in inter-bands but suspected to be due to IPSF impact on FPI FSR (under analysis)
- It shows that residuals not directly linked to KBr index law are compliant with specification, and then that "a posteriori" specification is well achievable

THANK YOU FOR YOUR ATTENTION