The Daily Variation of NH₃ over Agricultural Areas in Asia Using Combined Satellite Measurements

Adriana Iorga ⁽¹⁾, Jeremy Harrison ⁽²⁾, David Moore ⁽³⁾

⁽¹⁾ National Centre for Earth Observation, University of Leicester Space Park Leicester, LE4 5SP, Leicester, UK EMail: ai184@leicester.ac.uk

⁽²⁾ National Centre for Earth Observation, University of Leicester Space Park Leicester, LE4 5SP, Leicester, UK EMail: jh592@leicester.ac.uk

⁽³⁾ National Centre for Earth Observation, University of Leicester Space Park Leicester, LE4 5SP, Leicester, UK EMail: dpm9@leicester.ac.uk

ABSTRACT

Ammonia (NH₃) is one of the most important pollutants in the lower troposphere and is mostly produced from the use of synthetic fertilisers and manure spreading over agricultural areas¹. Most NH₃ is emitted in Asia², particularly in the Indo-Gangetic Plain in India and the North China Plain. Currently, NH₃ emissions are subjected to limited regulation in Asia and there are few ground monitoring stations taking NH₃ measurements. However, satellite instruments offer global coverage for NH₃ observations where ground stations are sparse.

Observations of NH₃ are essential for establishing environmental regulations for agricultural practices, particularly over Asia, as NH₃ plays an important role in the formation of secondary aerosols³ and PM_{2.5} over cities, through transport from rural areas⁴. Wet and dry deposition of NH₃ on soils and water bodies is also detrimental to ecosystem biodiversity as it leads to acidification of the environment⁵. The remote sensing of NH₃ presents numerous challenges because NH₃ concentrations rapidly change over time and space due to the short lifetime of the gas, which ranges from a few hours up to a day. Studying the NH₃ diurnal cycle provides valuable information on its sources, surface exchange, deposition and transport processes, and the impact on these by weather and surface conditions; all these are crucial for improving atmospheric models.

The NH₃ daily cycle has been investigated over the Indo-Gangetic Plain and the North China Plain using combined measurements from the IASI and CrIS satellite instruments. The NH₃ total column measurements were obtained by using an optimal-estimation-based retrieval method developed at the University of Leicester, incorporating a fast NH₃ detection method for selecting the a-priori profile. The study also focuses on the impact that thermal contrast and surface temperature have on the retrieval of NH₃ signal. We aim to compare the satellite retrieved NH₃ measurements to ground measurements and modelled NH₃ from the TOMCAT model.

¹ Clarisse L. et al (2009), Nature Geoscience, 479-483

² Van Damme M. et al (2021), Environ. Res. Lett., 16 055017

³ Zhao M. et al (2016), Aerosol and Air Quality Research, 16: 1378–1389

⁴ Wu Y. et al (2016) Environmental Pollution 218, 86-94

⁵ Krupa S. V. et al (2003), Environ. Pollut., 124, 179-221